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The equation to be investigated 

"II = (UX - 0 I "x 11,~ 0 = CanSt (0.1) 
for I o!<l describes one-dimensional longitudinal motions of an elastic medium of different 
moduli /l, 2/. For o= 1 describes analogous motions of an elastic granular medium, i.e., a 
medium having a finite (positive) modulus under compression and exerting no resistance to 
tensile forces. To be specific, the case O<*gi is examined. 

For the case when (I<Q<~ the kinds of discontinuities in the solution are classified 
(shocks, signotons, semisignotons, simple discontinuities), and the concept of a local sol- 
utionisintroduced, as describing the simplest qualitative structures of discontinuous sol- 

utions (189 such structures). By piecing together the local solutions we can find the global 
solution. The process by which discontinuities occur in the solutions and their bifurcation 
are investigated. 

A general theory of solutions is constructed for Eq.CO.1) in an analogous manner for 
o-l. In addition to the listed kinds of discontinuities, a new kind occurs here, a discon- 
tinuity in the continuity of displacement (spall). Specific problems of wave reflection from 
a free edge and from a rigid wall are considered in which distinctive, substantially non- 
linear, effects appear. 

Equation (0.1) is a special case of the equation 
u,! - (q (u,',), = (1 (0.2) 

to whose investigation many papers are devoted /3j. A number of facts are known about (0.2) 
which distinguish it from linear second-order hyperbolic equations. For instance, the Cauchy 
problem for (0.2) with rnflnitely differentiable initial functions and $ (ii.q'(i,~>O cannct 
have sciutions with continucus first- and second-order derivatives in the large, i.e., fcr 
all l>O /4/. The generalized solution of the Cauchy problem for (0.2) 
exists in the large 15,'. bJi it is not genera?ly cr.ique. These facts also hcX for IO.1). k 
deeper analysis of the sslutions can be perfcrmed in the case of (0.1) as compared with (0.21 
of general form, and in particclar, var1c';s versicns cf the disccntinuities thaz crginate in 
the sclution cf (0.1) and their tifcrca t;cns can be investigated in detail. : 

% Tne lnvestlgaticn of (0.1) is of interest bctt in connecticn with the general theory ci 
non-linear hyperbolic eqJaticns and iz ccnnection with the fact that problems in the theory 
of elastic bodies of different mcd;;i, elastic-plastic media /6/, phase transrticns /i/, and 
geophysics probiems /a,' result in (0.1). 

It is of interest to investigate the equation 

L'!{ = llir - / II, i II 7 A. A = CUIlSl iO.3) 

which describes the rcticn of a particle cf an elastic-granular medii;rr in a gravity force field. 
It turns cut that the scl.~tior.s cf !O.Z:, zn addition tc the disccctinuities inherent in the 

solutions of (O.i), can have yet ancther krnd of disccntinuity, a break in the continuit} 

(spall). Several sreclfic probiezs with a ciear physical interpretation exhibiting a sub- 

stantial difference in the scluticns as cornFared with the analogous linear formulation cf the 
probleit are solved for (0.3:. These scltuions also show a manifold of qualitative effects 

described by (0.3). 
Note that, by analogy with (0.11, a general theory of solutions can be constructed for 

the equation 
Ugl = (U, - B 1 ux / 1% - A. lal<i. d = con51 (0.4) 

Solutions of (0.3) are lizits of the sclutions of (0.4) as o-f, a<*. However, (0.4) is 

more complex than (0.3). Consqdently, as will be done in sect.6, it is natural tc Constr'Xt 
a general theory of solutions directly fcr !O.?). Moreover, the solutions of (0.3) can be 
considered as asypdptotic forms Gf the SOl'GtiCnS Of (0.4! for 0 - 1. 
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wuations of the form of (0.1) and (0.3) are of methodological importance since they 
enable a fairly detailed mathematical investigation to be made of a large mub~r of non-self- 
similar problems on the one hand, and have a natural physical interpretation on the other. 
The mathematical invesigation of these equations is quite fruitful and is far from being 
exhausted in the present paper. 

1. Generalized solution of equation (C.2). Piecewise-smooth solutions. 
Hugoniot conditions. No-growth conditions for the mechanical energy. A function 
u (I, % such that the functions u~,~(K~) are locally summable and 

i 
(UJi, - ~(u,)~~~)drdt = 0, VIZ fz, t)E C""(Q) (1.1) 

is called a generalized solution of (0.2) in the domain n. 
The definition (1.1) for the generalized solution corresponds to the Hamilton principle 

/P/. Later R has the form p<x< p, O< f< T( SQ, where p,g can be --so, 0~ respectively. 
Let us consider a finite number of smooth curves in 

ri = {I$ t: r = x1 (i),O < t < T), i = 1, . . ., N 
that intersect each other at not more than a finite number of points. The function 24 (2, i) 
is called piecewise-smooth in 51 if it is continuous in 9, has uniformly bounded derivatives 

u,, UI outside the lines r;that are uniformly continuous in any simply-connected open sub- 
domain 8' that does not intersect ri, i = 1,. ..,N and whose boundary can have a non-empty 
intersection with just one of the ri, In addition, it is assumed that locally summable func- 
tions U/l, cc (a,)* exist in the domain Q \ I?, r = UTi. 

From (1.1) integration by parts yields. 

Theorem 1. A piecewise-smooth function is a generalized solution of (0.2) if and only 
if (0.2) is satisfied almost everyhwere in B and the equations 

((Xi’ WI u, - cc @&:i = 0, IUIXi(,) = 0 (1.2) 

(IfLr, = f (z (2) 4 0, 1) - f b P) - 0, t) = I’ - f-) 

are valid on ri. 
Equations i1.2) are called the H;lgoniot conditions. It is known /3/ that the solution 

of the Cauchy problem for (0.2) is not generally unique in the class of piecewise-smooth 
functions. In this connection, we impose an additional constraint on the solution, correspond- 
ing to the requirement of local non-growth of the mechanical energy in the medium, and having 
the form 

(1.3, 

where 1' is a contour in I? transversal to I-i oriented counter-clockwise to the motion (the t 
axis is directed upward, and the x axis to the right). 

We wiil ciarify the inequality (1.31. We ccnsider tbe equation of motion cf a visco- 
7 e,astic medium corresponding to (0.2) 

%lV - q (U,fi), - @ (ff.>li),l = 0. $' (7.) > 0 

The solutions uu (.T. f) are assumed to be fairly smooth functions. The equation 

(D is the domain bounded by the contour ;'! fellows from Green's formula for the solution 
UN (I. I). 

As p-+ 0, the solution ue(x, t) tends to the solution u fr,l) of Eq.tO.2) for which 
there may be discontinuiti es of the first kind in the first derivatives, i.e., u,@ 
are bounded while u,~P 

and U,P 
has the form of a b-like fa..ily of functions on the line of discon- 

tinuities of the soluticr. of i0.2). Conseqnently, since the contour y is transversal tc ri, 
we have 

i,uv (11~")~ ulu dl- 0 as p--> 0 

Passing to the limit as I&-+ 0, in (i.4), we obtain the inequality (1.3). 

Theorem 2. Let ufr. 1) be a piecewise-smooth function satisfying the Ijugoniot conditions 
on the line r = r(i),f,<1<t,, where 2' 0) # 0, L&,,) * 0. It then follows from (1.3) that 
for t, < f < t, 
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sign [&r) sign I’ 0) = sign (cp (+ ) - + (cp (k$ + cp (5$)) (1.5) 

where hi (h,) lies in the neighbourhood of'the point u,+ (a;). 

To be specific we henceforth limit ourselves to the case when O<a<l. 
It follows from Theorem 2 that if U(z, t) is a piecewise-smooth solution of (O.l), and 

u,+u~-< 0, then in the case of a local maximum (minimum) in x in z(t) wehave s'(t)< 0 (z'(f)> 
0). Conditions (1.5) for Eq.tO.2) agree with the conditions for stability of discontinuities 
/lO/. 

2. Classification of discontinuities of a piecewise-smooth solution of 
Equation 0.1. Propagation velocities of the discontinuities. 
of the Hugoniot conditions. 

Integrability 
Let u(r, 1) be a piecewise-smooth solution of (0.1). We 

call the smooth line z = r(f) a line of discontinuity if U, has a jump on this line or U, 
changes sign when crossing it. There are four kinds of discontinuities of the solution !we 
de+""_" them by cc,p, y. b), which are defined as follows: a (shock): u,+u;< 0; fi (signot0r.l : 
u, --u, - = 0, u I changes sign on crossing the line I = r(t);y (semi-signoton) u~+u,- = 0. 
a,+ # 4-1 a, changes sign on crossing the line r = r(t);6 (simple discontinuity) : ux’# u;, uz 
retains its sign as it crosses 2 = r(1). 

Let u be a piecewise-smooth solution of (O.l), and let z = z(1) be a line of discon- 
tinuity for u. Then u allows of the representation 

u (1. 2) = p1 (I + bt) f q, (r - brj. us < 0 (2.1) 

u (bra 2) = p* (1 -L ct) - q2 (I - ct). u, > 0 

Here and below we have used the notatic'n b = 111, c =I[1 - 4. 

In this case the Bugcnict conditions have the fonr 

(PI' (J (1) _L br) + Q1' (I (i) - bt)) ((2' (2))' - b2) = 

(pz’ (LT (2) - ct) - q*’ (z (t) - cl)) ((x’ (1))2 - 3) 

pi (1 (0 -7 bt) + 91 (z (1) - w = p2 (5 (I) + ci) + q* (3. (1)-U) 

When J = ~((1) is a shock frcnt, we have frorr the first equation in (2.2) 

p,’ (r (0 - hl) - 91’ (I (fi - hi) (5’ (f))’ - c* 
pi' (' ;!I - C1) -- 9:' I*. (11 - ri1 = (I' (l'!: - b’ < 0 

Inecijality ,:.I: shows that the ineqna;:ties 

k> ,, I' (?I > c 

are satisfied for the velocity of its mcticn 1:. the case of a shock. 
Let J = 3 (f) be a signoton front. It follows from (2.1) that 

bp,’ (3 (I) - b!) : -bq,’ (.7 (I) - bii =-cqr’ (I (r, - L-2) = cpr’ (J (1) - Cf) 

It ca? be shown that if i u,,- exist, then U, +u,,- '~ (1 

We express u,* frorr. Eqs.!i.5: 

(p,,, (J (:) - bl) - 'j, ” iI (I) - ttj) (J’ (!i - h) = 
2bq,,, (r (1) - F,?) 

It follows frors (2.6; that 

(2.L’ 

(2.3: 

(2.4' 

(2.5) 

Relationsnip ~2.7) characterizes the ji~.z?:~ of the second derivatives on the signoton 

front exactly as (2.2) characterizes the j;unp in the first derivatives on the shock front. 

It follows from (2.71 that 

11' (1) / > b or i I’ (f) ! < c (2.8) 

We find from the first equation in (2.2) for the ser.isignoton that if the non-zero 

unilateral derivative is positive, then 12’(t) /=i c. if it is negative then 12’(t) 1 = b. In 

the case of simple discontic.zities i .x’(f) 1 = c if the unilateral derivatives are non-negative 
. on the discontinuity, ana ix’(t) / = b if they are non-positive. It follows from (2.4: and 
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(2.8) that the shock and signoton velocities are in non-intersecting domains. 
We refine the mentioned classification of discontinuities. We let a+ (a_) denote the 

shock for which z'> 0 (t'< 0). @+ (@_) tile signoton for which z’> b(z’< -b), PO the signoton 
for which 1 I’ I( c. We call the signotons B,. b_ fast, and the signoton PO slow. Analogously 

Y+ (P-) is a semisignoton whose velocity is b(-b), and v* (y-) is a semisignoton whose 

velocity is c(-c), If necessary, we shall include the subscript zero in the notation for 
the semisignoton to indicate from which side of its front the derivative equals zero. Namely, 

YD*G" are slow and fast semisignotons for which the derivative equals zero from the right 

of the front, and oY*, ‘Y+ are slow and fast semisignotons for which the derivative vanishes 
from the left of the front. 

we note that conditions (2.2) can be written in the form 

Zbp, (I (I) 1 br) = (b i c) p2 (5 (1) i ct) t 

(b - c) Q2 (2 (1) - 4 

2bq, (J- ([) - bt) = (b - c) p2 (1 (t) - ct) + 

(b T c) 92 (z (1) - d) 

(2.9) 

The passage from (2.2) tc (2.9) also denotes the integrability of the Hugoniot conditions. 
The Hugoniot conditions will later be used in the form (2.9). 

3. Local solutions and their diagrams. The local Cauchy problem. We consider 
piecewise-smooth solutions of (0.1) for which the kind of discontinuity can change only a 

finite nunber of times on the line of discontinuity. The assumptions made regarding the dis- 
continuities correspond to the most prevalent kind of solutions of (0.1). However, even these 
solutions are fairly complex in structure. Local solutions have the simplest structure, where 
the solution "in the large" is a set of local solutions. We call a piecewise-smooth solution 
of (0.1) local in the semicircle rfi - E, < I< IO L F,. 1, Ct < to + FI of the point (Jo. to) 
if all the lines of discontinuity in this semicircle emerge from the point (~".i~). within 
its limits they do not intersect for i,< 1. the kind of discontinuity does not change on it fcr 

to<t, and all lines of discontinuity emerge on the line 1 = I, 2 es. 
Let LA (I. 1) be a local solution of (0.1). We fix t and moving in the direction of 

increasing x we write the kinds of discontinuities of u (I. t) successively, excluding the 
simple discontinuities. For instance, the sequence p_. CZ_.~_. p_ means that as we more from 
left to right along x there are a fast signoton. then two shocks and after them still another 
fast signoton. It is here possible that u still has simple discontinuities that are not 
noted in the sequence. Such a sequence of the kinds of discontinuities of the local solution 
is independent of t and is called a diagram of a local solution. 

Understandably, not every sequence of the kinds of discontinuities is a diagram of a 
certain solution. For instance, because of ccnstraints on the velocity of the motion of 
discontinuities (2.4) and (2.8), the diagrams CX_. pm. . . ..(r+.~_~.? .;.,.&.cr_,....etc., are impossible. 
Moreover, it can be shown that becuase cf the structare of (0.11 the Hugoniot conditions and 
the condition that the mechanical energy should not grow are not realizable by sequences of 
the kinds of discontindities cf the following kind: 

fi_, fi_* .: fi_, T_, . .; CL_. a_. . .: . .( ‘CF. fl,,. . .; . . ., 8’. ‘i’. . 
: . . . ;,<,-, *;‘. .; ., Of, (I+ _’ ,, ;_. B,: P,. B, 

Here we have in mind twc diagrams fi_,*i_n,.. .; ~_,"~;_~ . .% as the diagram fi_. y_, and bo*th 
these diagrams are impossible. 

If the solution in the semicircle is monctonic in x, then we dencte the diagram of such 
a solution by 0. The diagram Indicates the number of sections cf distinct monotonicity of 
the local solution. If there is a shock or a semisignoton with a refined index zero in the 
diagram, then the kind of moaotonicity of the solution between the discontinuities can be 
repoduced from such a diagram. 

All possible kinds of local solutions are presented in Fig.1 for fixed t. The number 
above the arrow in Fig.1 indicates the n:unber of different variations in the behavlour of the 
solution after the arrow. For instance, if the inequality u,(-_bt -j- 0, f)>O is satisfied 
for the solution, then 42 continuations are possible in the domain f > -bi. These continua- 
tions consist of 21 kinds of solutions that increase monotonically in the interval (-bi, -ct) 
and 21 kinds of solutions having a shock in this interval, etc. As follows from Fig.:, the 
local solutions have 189 allowable (realizable) different diagrams. 

We shall call a diagram stable if any local solution sufficiently close to the given 
solution in the metric 

c Ia 
[ 

--$-f2~z~+,10~t~tO+] 

has the same diagram. Diagrarr.s that do not contain semisignotons are stable, The number of 
such diagrams are 36 (see Fig.1). However, there are also stable diagrams that contain seai- 
Signctons. An example is the diagram a_, oy-, IQ,*, cr. A graph of u (1.1) with such a digram 



for fixed t is displayed in Fig.2. Xn al.1 there are 52 distinct stable diagrams. 

diticns 

Exampies 
are presented 

4. The 
be a solution 
Therefore, u, 

U (1. 0) = ug (r). U1 (.I.* Cl) = L‘" (s) (1.1: 

of existence azci uniqueness theorems for the solution of a local Cauchy protlerr. 
in /il./'. 

occurrence of discontinuities of the solution of (0.1). Let ~(2.1) 
of (0.1; of sufficiently high smoothness in the domain --E<X<&,---E<1<0. 
retains Its sign in this domain. To be specific, we wiil ass*me that 4 > 0. u, 

(0. 0) = 0. and therefore, for t< 0 the function u satisfies tine equation 

Ulf - Pu, = 0 (4.1) 

We will ass'ume t‘nat U, changes sign as x changes for the continuation u as a soluticr: of 
(4.1) for t>o. This means thiit disCcntin:ities Cccur at the point (0,O) fcr the solution 
of (0.1) that agrees wit‘? u for f<@. 

We will. first axamlne a typical process (general situation) for the occ~.Xrence of dis- 
Continuities (u (.r, t) 15 a versa; deformation with parameter t j12/). For r<(l the solution 

U (s. i) of i0.l) has the form u (r. i) = n (s 7 ri) 2 4 (* -ct). The functions p. 9 are assume6 
to be sufficiently smoc+Lf~ and p (0) = g(0) = it. We wil; Limit ourselves tc expanslcns of the 
functions p, p at zero bp the Taylor formula TV the cubes of the arguments inclusive 

Ii (J. r) = a (s A- Cf)3 - f; (r - cfj? + 1' (z. L- cr) + (4.Z) 

6 (X - cr)" 7 i. (.r - rt)? 2 )I (I - cf) 

Since a critical p0;r.t ccc~rc in the sclutisn at t = 0, then u (*. 0) = 0.~~. 0 > 0. r.e., 
‘< 2. p = (1, fJ - 1, = 0, ci f 6 = 6. W;“do.2;t loss cf generality, we Can consider that u (z. l) has 
the following fCrr. for 1<0: 

U (r. f) = '1 (i - c1)3 + 8 (I + ct)' -L. 6 (r - ct)S - e, (I - Ct)* (2.3; 

The occurrenCe of a disCcntin,ity at the point (0‘0) is ensured by the inequalities a + 
fi> 0, @ < 0. By solving the equation U, (r. t) = 0, we find the fronts of the fast signotons 

s = J, {1). I = s_(l) from r3.3). Furthermore, the solution for r_(t) < J< z+(f) is found fro:: 
the relationship (2.5). The time of existence of the solution with diagram @_. fr, is deter- 
mined from the conditicns r_'(f)< -_b.z_'(t)> b. It can be shown that if fa I-+ 0.16 j+ x.0< 
,-,q (a _ 6 1 :~a .A 6 j < cl. then the time cf existence of a solution with diagram fi_. fi+ tends 

Fig.2 

Only 10 diagrams correspond to piece- 
wise-linear local solutions of (0.1) that 
describe the solution about dissipation of 
the discontinuity. In the case of (O.l), 
solutions of the problem about the dis- 
sociation of a discontinuity do not therefore 
describe the qualitative manifold of solutions 
of this equation at all. 

Fig.1 

The local Cauchy problem for equation 
(0-i) in a semineighbourhood of the point 
(O,O) is to seek the local solution u(s, 1) 
of (0.1) that satisfies the initial con- 

to zero. 
Thus, as a rule, fox a smooth solution fcr i<@ two fast signotons occux at the trme 

t = 0 which can undergo fur';ler transformation after a certain time. If the time of ex1s:erCe 

of these fast signotons is q‘Jite small, then it is natural to consider the passage at once 
from a smooth solution for t<O to the next stage in the behaviour of the discontinuities 
by bypassing the stage associated with the fast signotons. This is why itis worth investigat- 

incj schemes for the occ;lrrenCe cf discontinuities net of general locatiora. 



We will present some examples of processes for the occurrence of discontinuities 
different from the passage 0~ B_,fi.,. For r<O let the solution u(t,t) have the form 

1 

P,(t+C1)f41(r-Ct), z<o 
U(I,l)Z p,(5.+cCt)i!?,(1-Et), ct<t<--cl 

p,(z+cl)+-q,(z-Cf), r>-Cf 

P/ h) = -A 1 n I *", 91 (11) = --B 1 rl I'", PI(E) = c 1 E I*n 

4% (',) = D 1 E I?", n>l 
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that are 

(4.4) 

The condition +>,O for 1<0 is ensured by the inequalities A >O, A +B>O, D>O, C-+ 

D 7 0. We note that if the numbers A,B,C,D are positive, then the solution remains mono- 
tonically increasing even for t70. 

We shall seek fast signotons for the solution for 170. We obtain for their fronts 

I_ (I) = - 
(A” - B”) Cl 

A; _ p 

= k_l 
(4.5) 

(D” - C’) cl 1 
z+ (1) = 

D’ T c” 
=k+t; A=- 

If k-<-b, k,> b, then (4.5) indeed yields the fronts of fast signotons even for l>O. 

If k->-b 3r k,<b, then for 170 the solution cannot have the diagram S-,0+. 
We note that for 1>0 the solution can be sought in the form of a homogeneous function 

of degree 2n. Consequently, the fronts of the discontinuities are straight lines. For 
simplicity we limit ourselves to the case n = 1. For 1~71 the investigations are performed 
analogously. To be specific, let k->-b. k_>b, and therefore C<O. Hence, for t> 0 there 
is a fast signoton in the diagram. We shall seek the solution with diagram z-7 B+ for f>O. 
From (2.5) and (2.9), for I= ~12 the shock front, we obtain the equation 

4CDc? (z -L b)z 
(b i 0 A (a - c)‘~ (b - c) B (a - c)L=-~ (D _ c) _  b (D _ c) 

(4.6) 

Setting B = 0 in (4.6) and taking into account that 4 >O,C<O, D>O, we obtain the 
existence of a solution of (4.6) such that -b<a<--c. The existence of a solution with diagram 

a-. B. is thereby proved. 
We will examine another solution for f>O that has the digram &,.b+. For the front 

t = Sot of a slow signoton, we obtain the equation 

B (c - &,) (c (D - C! y- b (D $ C)) = --?CDc (b - &, (4.7) 

Having been given the numbers C,D.&. where 1 &,/<c, we find the number B from (4.7). 
For the passage O-.&,6, the appearance of sinouiarities in the solution for I>0 is 
possible that appear in the power-law growth of the second derivatives on one of the lines 
.7 = +, Although the passage O--60.fi, is not typical, as remarked above, and can vanish 
for t<O for small changes in the solution, the appearance of this singularity affects values 
of the second derivative that are large in mangitude. The occurrence of a power-law singularity 
for a solution that is smooth for r<O is of interest in connection with the fact that the 
corresponding derivatives are discontinuous in shocks and signotons, but the solution has 
unilateral derivatives of fairly high orders. 

We will examine in greater detail the origination of power-law singularities in the 
solution during the passage 0 - so, I',03 which is the passage to the limit O- &, fl, and is 
technically simpler to investigate. For l<iJ let the solution u be represented in the form 
(4.4) where the functions p,.qi,pIsq7 are such that 

pi (0) = *[ ((0 = ,uT (0) = qr (U, = p,’ (0) = q1’ (0) = p7’ (0) = qr’ (0) = 0 

Other conditions on these f.&?ctions will be presented below. Since the solution contains 
a semisignoton y0 7 for f>O, then 

(4.8) 

The non-decrease of u in x for r> bf>O follows from the inequality p,“(E)<0 for E7 0. 
Since p,' (0) = 0, it follows from the inequality p,“(i)<0 that p,‘(E)<0 for &70. The con- 
dition of monotonic growth of ;I for I<@ results from the inequalities p,‘(E)<0 for E70, 

PI’ (rl) 7 0 for n < 0, PL’ (II,) - qi’ (~1 7 0 for rl14 nr < 0. For 1>0 we shall seek a solution with 
diagram PO, y+o. Then ~(2, I) is given by the formulas 

c P,(I-LLY)-qf(I-cf), z<-ci 

U(Z,I) =s 
P(ILCf)~Q,(Z-Cl), -cl<r<~(l) 

P,(rfbl) -q (I - bl). B (1) <z 4 bl 

p,(z+cf)~q~(x--cl), br<z 



The condition for merger on the line I= bt determines the function 

(4.9) 

We take the front Of the Slow signoton in the form t\(t) =--rt+@,k>o, ,h,>i, 
the function p,ql,* in terms of p,from (2.5) and the form of 6(t) 

We express 

g'(-(b + c) t + kl") = -p*t ((b - C) t + kP) 
91 (-2et + kf") = -&-$I, ((b - c) 2 + kry 

p’ (k& = b&p,’ ((b - c) t + kt”) 

iB.lO! 

Since p,‘<O and pi‘>>, then u isamonotonically increasing function for --ct<~g p(t) 
and monotonically decreasing for B(t)q~x bt. 

Let the function ~~($1 be infinitely differentiable for f,>~ and M>l an integer. 
Then it follows from (4.91 and (4.10) that p:(Ej,q(@,p! (9) are infinitely differentiable func- 
tions for a>o,q<il. We set F;" (1, = AtK"r f 0 (6N-?j. In this case, we have from (4.9) that 
P." (E, = B:"-' ( 3 T 0 Cb :*l‘+). We find from the last inequality in (4.10) 

Equation (4.11) shows that the second derivatives of u can have a power-law singularity 
on the line I = --Cf. For instance, if .*I = 2, X = 2, then utl (f f cri - C (3 + clPir for z - cz > @. 
Thus, by taking the function pl(ni such that pi'(ni>O for ?<0, and ,D~ (:j such that p,"(E~ < Ci 
for t> (1‘ we find u with the diagram &.*;.,O from (4.81, (4.9), (4.10). 

5. Bifurcations of discontinuities. Let J = r(i) be the front of a discontinuity 
which is a smocth curve for f,< 1< 1,. an which the kind of discontinuity is conserved. We 
shall say that a discontinoity bifurcation occurs at the point (r(&). f2) if branching of 
the discoctinuity occI;rs for r> f: at this point or the kind of discontincity changes during 

passage through this point. It is assumed that there are no other discontinuities except 
I = I ft) in a certairi semineighbourhood of the point (s (ip). t,). 1% f,. 

We first consider the bifurcaticn of the fast siqzotons. For t<O let the solution 
have the diagram 6, and a signoton whose front I = @(tj is a local maximum, where p(t) is 
assumed to be a sufficiently smooth function and 6' (i) = --b - Xi + 0 (is), d > (I. Then the 
solution allows of the representation 

The f-unctions ,r~. 4: are as.sXQed to be s.>fficiently smooth in a certain neighbourhood cf 
zero. Witfioilt loss of generaiivi, it car, be assmed that 

p[ (C-r) = qi (0) = pr (0) = 0, (0) = pi’ (0) = Qi’ (Cl) = pr’ (0) = qr’ (0) = 0 

A typical case of bifurcaticz corresponds to the ineqtiairty 

Pi" (") - 4iV (0) < 0 is.11 

It follows from inegJali=y f5.1) and the relationship (2.5~) that pfll(cf)+O, qi"(tlj+O. 
and we find from the condition U, > 0 for r<O that p; (ctj< 6, g," (0) > 0. For t > 0 we 

will seek a sc:utioil with diagrazz ct_ iz t3e forrr. 

I pi (,r -- 
Cl) - qi ir - Cf!. LT C”%(f} 

u (.r~ t/z i p; (r -- bf) - q (I- bf). 2 (I) t”. s -< bf 

: &Jr (2 - lx) - q, (I - hi). s 2 br 

The unknown fzr.cticns a (I), Q (11) are determined from (2.9). Namely, from the first 

equation in (2.9: we find a(i) bjj the theorem on implicit functions. The second equation 

in (2.9) determines ~(11). 
We set 0: (I) = --bt - k(t)P. In order for the shock velocity to be incident in the appropri- 

ate zone, it is sufficient that k Co)> 6. We set pi (x) = -.@ - Pr3 - 0 (rP) so that p: (i) = 

-2- 6Pr + 0 (J?). We find ql. Pt. tit from the relationship (2.5). In particula; 

4r(')=~"'.-$:,~-3Pj~)2).-U(I') 

Substituting the ex;-iressions for pl~ qt. p.. a into the first equation of (2.9>, we find 

that (ir - c)k': (rj = I,$ (b - rj d:. - 0 (t) !5.2j 
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If b# C, we obtain k (0) = 2-“Id from (5.2). Therefore, k(O)>O. The monotonicity 
conditions for u are verified directly for t>O. We note that the ratio of the signoton and 

shock front accelerations at the bifurcation point equal 2'/* and therefore is independent 

of the quantity a in (O.l), although this result is only valid for a+O. 
we once again examine the question of the bifurcation of a shock. For t < 0 let the 

shock front have the form 

a (t) = -ct +- kf* J- 0 (P), k > 0, 0 (t3) = t3r (i) 

(7 (4 is a fairly smooth function), and the solution allows of the representation 

1 PI (2 + ct) + 91 (t - ct), 
u(rt o= ( p,(r 

I < a (1) 

f bt) + q, (I j bt), z > a(t) 

We set 

pl (I) = AZ + Br* + 0 (9). q, = CT + 09 + 0 (+3) 

We find from the relationships (2.9) and the form of a (t) 

p, (I) = - c $ + ((b T c)(AyC)k~(b-c) 4&3.& + 0(x3) 

*I 
qr (.T) = C + + ((b - c) (A f C) k $ (b - c) 4Dc*) ?b + 0 (r3) 

For simplicity we will limit ourselves to the case when A + C>O. We assume that 

Pr" (0) A- Qr' (0) < 0. This inequality ensures that there are no collisions of discontinuities 
and is equivalent to the relationship 

(?--aa)tAAC)k <_D (5.3) 
4a(l--o) 

The occurrence of the signotoE p, for f >0 can be determined from the functions p?. q, 

(5.4) 

then for t = 0 a fast signoton fi, occurs, if 

--D>D, (5.5) 

then no fast signoton p+ occurs for sufficiently small t>o. 

We note that the left side of (5.3) is always less than the right side of (5.4), i.e., 
a solution with a fast signcton p, is generally possible. In this case the typical diagrarr. 
for 1> 0 has the form pO.a+, 13, and the investigation of such a solution is always awkward. 

Let the inequality 15.5) be satisfied. For t> 0 we shall seek the sclutior. with diagraii 

B 0' For the slow signoton frcnt z = fi (1) WE obtain. from (2.5) the equation, 

or' (B (t) + bi) b = -~9~' (j3 (t) - ct) 

from which we have 

f3’ (0) = - b(AiC)k-(b-c)ZDc? 
(A-C)k--((b-c)2Dr 

It fellows from conditiori (5.5) that 1 f3’ (0) j < c. The passage a_--* PO considered 
describes the process of shock disappearance. 

We will now consider special cases for the occurence of disconti-uities for smooth 
sclutions as examined in Sect.4. In the first, the smooth solution fcr t<O generates a 
shock for f>O, and the second aslow signcton. The results in Sect.5 are the foundation 
for the examination of these passages. Namely, if a fast signoton occurs for t= 0, then as 
follows from Sect.5, the transformation intc a shock is typical for it. Therefore, the first 
of the special solutions in Sect.4 approximates the solution of the general situation with a 
small existence time for the fast sigrroton. The second solution ir. Sect.4 characterizes the 
solution of the general situation. with small existence times for both the fast signoton and 
the shock being formed from it. 

6. Local solutions of equation (0.3). The concept of a local solution of (0.3) 
is analogous to the corresponding concept for (0.1) (see Sect.3). Namely, a rectangle II: 
20 - e,<s<r, + E,, lo< fQt, t Ed is considered, as well as a fan of smooth mrves ri: z = 
xi (t), t, < i < to +- E*, i = 1. . ., .Y, starting from the points zO, 10;.zO = zi (to) and do not 
intersect in IJ for t> to. We denote by n,, i =O, I,..., ,V an open connected domain in ll 
that is bounded by the adjacent sides Ti,_TiAl and the sides of Il. 

The function U(I, t) defined in n and satisfying the following conditions is called a 
local solution of (0.3). In the domains IIi,i = O...., A’ the function u(z, t) is twice con- 
tinuously differentiable, monotonic in x, where the nature of the monotonicity is independent 
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of t and satisfies (0.3). The line.5 ri are called lines (fronts) of discontinuity of the 
solution. To Complete the definition of the concept of a local solution it remains to describe 
the behaviour of the function ~(.t, t) during passage through the front of the discontinuity. 

Four kinds of discontinuities a,b,v,6 were considered in Sect.2. These kinds of dis- 
continuities were sufficient to describe the evolution of smooth initial functions of the 
Cauchy problem for the equation (0.1). These four kinds of discontinuities are also conserved 
for (0.31, where the Hugoniot conditions (1.2) and the condition of local non-growth of the 
mechanical energy (1.3) should be satisfied for the a-discontinuity. However, the above- 

mentioned four kinds of discontinuities turn out to be insufficient for a solution of the 
Cauchy problem to exist for (0.3) with smooth initial functions. 

To ensure the existence Of a solution of the problem under consideration, one other kind 
of discontinuity must be introduced, namely, a h-discontinuity (a discontinuity in the 
continuous displacement, spall). Its front is fixed, i.e., z(t) = z,,. Taking into account 
that x is a Lagrange coordinate of the particle, we find that after the formation of the i.- 
discontinuity, the whole system dissociates into two inexchangeable particles of the system. 
Furthermore, it is assumed that u+> u- and (u,)* > 0. 

We note that in the case of (0.3) the fronts of the y- and &discontinuities emerging 

from the point z = 0, t = 0 have the form z=&j"Zt, z = 0. If z(t) is the siow signotcn front 

emerging from the point z = 0, t = 0. then z(t)= 0, i.e., the front is fixed for the slow 
signoton. 

We consider the condition on the a-, p-discontinuities in a form taking account of the 
specific features of Eq. (0.3). The corresponding conditions used in constructing solutions 
of specific problems are In this form. We let u1 (z, t) (u' (I, t)) denote the solution u (t> t) 
of (0.3) ir, the dozair where U, (1. t) < 0 (~~(5, t) 2 0). Tnen considering x0 = 0. to = 0, we have 

u1 (I. f) = p (I " 1'5%) -I_ IJ (2 - 1%) - AZ214 iC.li 

~2 (I, t) = (I (I) + b (rj t i At*,? 

Froc the relatlonships :b.;i and the HugoZi ot conditions (1.21 we find 

21 .Z,D (r(t) X 1% = 1'-2 (a (.I (1)) $ ib (r (4)) 5 

B (x (1)1 - A (1’2 4) (X (t) --l'%)' 

(6.2: 

where B' (i.) = t 0.) , and r(t) is the front cf the a-discontinuity (shock:. 
If r(t)is tie front of a fi-disccntin.dity (fast sign-ton), then by using (6.1; the con- 

ditions OT, the frcr.t can be wrltten ir, the forrz 

a' (J (0) - ib’ (x (tjl = 0. p’ (I (t) -T- 1%) -i- (6.3‘ 

- q’ (I (l) - 1.5, = .-II (1) ” 

b (3. il,i = -At - 1~“’ (J (11 - 1%) - J%q (2 (t) - lr21) 

We note that Ike ineq.321iCj7 

1 a' (i) I ;< 1'2 !i.4) 

is satlsfled for the shcck fror.t velocity a'(f) while we have j e’(t) / 2 I/‘? fcr the velocity 

B' (t) of the fast signoton fr0r.t. 
Using the general properties of the solutions of (0.31, we will proceed to the soliition 

of specific problems for this equation. 

7. Occurence of x-discontinuities (discontinuities in di.sDlacement). We 
consider the simplest problem for (0.3! for A = 0 on the collision of two unformed systems 

in which the spalling phenomenon occurs. Let --I,( I( I,. Z,, I?> 0. A solution of (0.3) is 

sough: that satisfies the conditions 

u (3, O)= urJ(ri. U,(I. @I= row), 

u, (- I,. f)> 0. u*(&. i) 2 0 

The soluticr. U(I. i) fcr t<O iS given by the formulas 

l;i, 
u(z.fj= o 

( ( 

-/ll,<z,<C/ 

O<x<l, 

i.e., for t<O the left system -!,<I< 0 moves to the right of a constact velocity V, 
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while the right system 0 g 2 -s I, is fixed. 
To be specific, let 11< 1,. We present the solution of the formulated problem for t>O. 

If 1,<,<1/Zt<l,, then 

V11!1’Z, - 11 g x g - 2IL + I/zt 

II (I, t) = 

i 

v (1% - 4/21/z - 211$. fit <I < 1% 

0, I/s < x < 12 

If 1, Q f2t< 1, + I,, the solution has the form 

l’l,,ll’Z - II <I < - 211 7 l?f 
u (I. t)= V(] 'Tt -r),21'Z. - 21, - j?t.< r .< 21, - l’% 

1’ (t - I q’3 2, -3 211-15.Gr<lz 

Thus, up to the time 1, = (1, - 12)lr? the inequality u,~.< 0 is satisfied, and therefore, 

the problem is solved within the framework of the linear formulation. 

For t > (!, + 12)‘1 -2 the solution has the form 

i.e., at the point 2 = 1, - 2, a fixed discontinuity again originates. 
Therefore, the impact of the left system of length 1, moving to the right at a velocity 

V in a fixed right system, results after a certain time in the fact that a piece of length 1, 
is torn off from the right system, which will move to the right with velocity V while the 
remaining particles will be fixed. 

8. Occurence of a shock from a static initial state. Let US consider a 
Cauchy problem for (0.3) with d = 0 and the initial conditions 

u (2, 0) = ug (x), Uf (I, 0) = 0 

where uO(x) is a continuous function, U,'(I)> 0 for I < O,u,‘(x)< 0 for r> 0. For t> 0 
we seek the solution in the form 

i 

uot+ I &a (1) 

u(r,t)= p(I-_li~t,-q(1-_1~~2). u.(f) .< .r < 13f 
r- 

(ucl (z - 1 3f) - U” (I - 1’Zf)) ‘2, 3 > l/?f 

where I = a (t) is the shock front, and p (E) = u. (5),2, 5 2 0. 
The function a (t) is found from the first equation in (6.2): uo(a (1) f l’?t)= ~,,(a (t)), 

Furthermore, knowing a(t). we find q(q) for n <O from (6.2) with the lower minus sign. 
Then the monotonicity condition u,,< 0 should be confirmed for 
inequality (6.4). 

a (1) < z < l’?t , as should 

Let u,,(x) be an even function; then a(t) = -1 2i 2 and q(n) 
ate conditions of monotonicity for sufficiently small 

5: a0 (q'3)!2. The appropri- 
There- 

fore, the solution actually has the diagram a_. 
t>O are confirmed directly. 

We note that more CornFlex structures of the solution are indeed possibIe in the problem 
under consideration. For instance, if IQ (z) = - 1 I I’/*, then for f > 0 the solution has the 
diagram a_, a+, oy+. In this case the solution is a homogeneous function of degree 
shock fronts are lines 

VP, and the 

==a_i, c -= $2, a_= - 
3J2-19 

a, = 
4-O 

4. ’ 7 

In the problem under consideration the solution in the case of a smooth function U,(Z) generally 
has the diagram a_ only in a small time interval. 

9. Collision of a rarefield system with a rigid wall (A=O). 
the system be located to the right of the wall x = 0 

Let x>O and 

for 
t)> 0. Furthermore, let 

I<O, i.e., u, (I, t) > 0, x i u (L 

IJ (29 0) = % (4, UI (2, 0) = --u (I), ug’ (t) > 0, v (0) > 0, 
4 (0) = 0, 
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I.e., near z = 0 the system moves to the wall z = 0 for t.=O. 
For small t> 0 near z = 0 the solution has the form 

Therefore, a compression zone abuts on the wall, which is terminated by a shock whose 
front is t = a(f). From (6.2j we find the equations for p (Q. a ft) 

= Zk'Zp (1 'St & cz (t)) = j'T (ug (a (tf) - tti (ff (t))) - V (a (tjj 19.1; 

where Ii' (5) = t'(E). V (0) = 0. From (9.1) we obtain a'(O), p'(O) 

a' (0) = 
2a& 

iio' - v' @o'p - 3zg 19.2) 

p’ (0) = -; (I’ (&‘)Z $ 2v,* - uo’)T uo’ = LAO‘ (O), v. = u (0) 

Xf u. (I) = kx, L’ (I) = i’*. then (9.2) yields the solution for all S>O. Namely, r_z(t) = a'(tli~. 
p (E) = p' (0) 5. 

We trace the whole collision process in this case (for 04 Z< 1). For 0 < I < I:cz 

" (f,f)Z 
I 
2pr> o<z<Cxt 
kz-r$, al,c,$I 

If i.Cx,c t = I z- 1 $JTI then 

li !I. I1 = / ?,w, Osr3~/--_~(f-kz) 
; “P(!-~c/z!-11/~~1), i-p’2[t--lcl)<tcr 

Pinaliy, if t > I a - I’]‘?. then ,, (=_ LJ 3 zP (I A &'?.?-li'%l when (i,C r< 1. Therefore for t>lrl- 11 2 
the system becomes compact (u,-@and moves to the right at a constant velocity 

1, z p*I 
1.02 

<l <to k--1, k -&.8 
Thus, aunifo_rmly rarefied system (u+= k>O).movingtothe leftataconstantvelocity % because 

of a coilisionwith arigidwall,wil: recoil fromitafteracertaintimeandwillmovetothe rightwith 
constant velocity 1,. (.I <lo, as a compact system iu,= OJ. 

10. Reflection of a compression wave from a free edge. Thefcllowingproble;r: is 
considered for (0.3: with .j=@. For l<O let the solution of (0.3) have the form 

Theproblecistcfindthe solution fcr t> 0 under the condition U, (0, t) > 0. It turns out 
that the formofthe soiutiondependss,~~star.=iallycr. r(t). Hence,we considerdiffereztcases Of 
the behaviour of j"(i). 

Let in i:) '. (1. then for t 2 0 tne sciution has the form 

j ‘(,T--lrTr;- I(j’%-$). O+<.,<J‘t 
lx (i. ‘j = j f (,?. T , -20. I > 1 r-t IlO.ll 

Indeed, if (1 .< .c ;; 1 '5. then 

if, = 1' (j"zi - J) -I' (],-2f - J) = r (E).3r 

Therefore, in this case the scl,;tion ct f0.3; agrees with the solution of the linear 
problem (a compression wave reflected frcr. a free edge remains a compression wave). 

ff f’ (El is a monotcnically increasing function, then the solution of (0.3) for t> 0 
has the form 

(10.2) 

In this case a semisignoton of, occ.urs at the point I = 0 for I = 0. 

We note that rf f (5) has a discontinuity of the first derivative at the point &,+ thee 

for t 2 g@‘zj~*T a dis&ontincity in the displacement occurs at the point ZIJ= &,,2* If f' (E) = 

0 for $2 t,, ther. for z> E1 2 and i> E,.2f'j the reflected wave propagates only a finite 
distance to the right. 

We now consider several cases of a compression wave reflected from a free edge, when 
f"(E) changes sign for F, = Eo. f" (to) = 0. Let r (E_)< 0 for E < EO. r (E)> 0 for iE > Fo. We 

consider the function 5 = E(v) , i.e. the middle o'f segenents connected identical values cf 

the function ,y = j' (5). y, < y -< y, < 0. 
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Let E(Y) be a monotonically decreasing function such that 

min E (~1 = E (yl) = El, max E (~4 = E (v,) = Eo, 2% > 

In this case the solution has the form (10.1) for O<j&< E,. f (2 i- i/zt, + f (?‘zt - 4, 0 Q x Q B (0 

u(x, f)= a (I) $ tb (I), B(O<“GEl_ 
c(r) + fd (I), El < x < 0 
f (x + I’%t). .>l/zt 

Here J = p (i) is the front of the signoton b_, 5 = I/% is the front of the semi- 

signoton Oy,. The front I = b(1) is determined from the equation 

1' (1% $ p (i)) -1' (J’S - p (1)) = 0 

we hence find that 

I/z + 6 (1) > Eo, IL5 - (3 (i) < F,. B' (1) < 0 

since E(Y) is a decreasing function. We find from the equation for b(t) that 

and, therefore, p' (t)< -17, i.e., 2 = p (1) is actually the signoton front. The functions 

c (r), d (T), u (x), b (r) have the form 

c (I) = j (2~) - 26’ (2x), d (3) = 21’2f’ (2~) 

b (I) = J’??(f’ (]‘,?I (3) A J) - f’ (1% (J) - .T)) 

a (I) = f (1 ‘?t (J) y- J) + f (I % (x) - 2) - t (2) b (I). 

where t = t(r) is a function inverse to J = p(I). 
The monotonicity condition for the function C(J) - Id(x) is confirmed directly, while 

the monotonicity of the function a (J) A rb (7) follows from the fact that p (1)~: rQ E,, t (r) 
is a monotonically decreasing function, and therefore t> f(r)> E1'Jr?!. Thus, in this case 
the solution has the diagram fi_,"r, in semineighbourhood of the point (E1,E1'l/'Z). 

If t = E (y) is a monotonically increasing function, then for 04 t< to jr? the soiution 
is the same as in the initial stage of the preceding example. If t > z"'jrz then 

I 

n(r) - rb(.zj. @ < r G B 0) 

U(3.f)== !(X-lr3)-,/(Jr~f-~). p(q<z<l~~f 

I .i(x - 1’3). 5 > 1% 

where r = p(f) is the front of the signoton (B'> I?), the functions fI (f). a(x). b(z) are 
determined by the same formulas as inthepreceding example. In this case the signoton occurs 
at I = 0 and moves to the right while in the previous case it occurred at r = 5, and moves 
to the left. 

We examine the problem of compression wave refiection from a free edge when I"(E)>O for 
0 < 5 4 to. f (E, < 0 for E > E,. Here for Og 2y% Q to 
?k'?r>& we seek the solcticn in the form 

the solution has the form (10.2). For 

I1(2r)--‘r! ,21)(CZ’r -z). O<Z<(I(f) 

where I= o (f) is the shock front, and 20(:,'2v'T) = &. The functions CC (I). g(n) (q(0) = 0) are 
desired. We have for them from the relationships (6.2) 

f (2 (f ) - I/Tfl = I(?2 (f)j + (IT1 - a (I)) 1’ (2~z (I)) (10.3) 
p (2 (1, - JTf)= Q’“Z- 2 (?)I 1’ (?cz (I)) 

By the theorem of implicit functions a(f) is found from the first equation in (10.3), 
and q(n) is found from the second. The complexity of the first equation in (10.3) is that 
if f" Go) = 0 and f “I (5~ i 0, this equation has two solutions. One, c1 (I) = u5, is not suitable. 
To find (L' &,/2 f/ii for the second solution, the first equation in (10.3) must be differentiated 
thrice and we must set t= &/2dZ: We hence obtain a'(&'2 b/;ij = _ 05. 



Therefore, in the case under consideration, the compression wave moving to the left is 
transformed into a rarefaction wave of the semisignoton type on being reflected from a free 
edge. Then at a time f = fJ2fl a shock originates on the front of this semisignoton and 
moves to the left at a velocity -.-@%I at a time i= E,/2 J27 

Note that this velocity is independent of the kind of function f. 

11. Mfotion of particles ofanelastically granular medium in a gravity force 
field. . Lift of a compression wave and its reflection from a free surface. The x-axis 
in this problem is assumed to be directed downward. We consider equation (0.3) for which 
A>0 and r> 0 and we take its solution for t<O in the following form: 

1 - .4a";4, 
U(I? o= _ Ar2., 

O~X,<--p 

I ,.k-yf(l/%i.X), .>--f2t 

where f (0) = 0, f' (f) < 0 for f>,O. The edge x =o is assumed to be free, i.e., u,(@,t) > 
0. Thus, for t<O a compression wave is propagated from the bottom upward (against the 
direction of the gravity force) , and reaches the free surface at t = 0. 

First, let I f” (8) / < A/4. In this case, for t>O the solution agrees with the sclution 
of the linear problem and has the form 

Now, let j"(E) 5e a monctcnically decreasing funct_ion and let there be a r,>O for 
which j“ (21,) = d 4, In this case, for @<t< 1, = x,if/Z the solution has the form 

1 ‘,*A (t’ -; 22 - zy%q y- f(2z) _t 2(j“Zt --)I’(Zr), 

u (x. () = 1 r (z _ ,‘Z[) _ AZ2 ; y;&; 

In fact, for 0 < I -5 j'% C< x1 the inequality 

II, = 4 (I'5 - 1)j.Y (5) - A 4) > 0 

where T = a (1) is the shock front. 
We find equaticns for cz (t) an5 r ([) from the relationships (6.23 

i (a (l) - 1 'S) = f (26 (t)) - (j?f - a ii)) j' (‘Za (1)) - 

' f.4 (a (t) - j"2f)' 

ili.1) 

By the theorem oc implicit functions, a (t) is found from the first equation in (ll.i), 
and r(E) is determined frorr. the second equation in (11.1). Let !"'(2r,f+ 0 then by differen- 

tiatingthe first equation in ;;l.l> three times with respect to t and setting t = iI we 

find that a'(2,) = - 1'2 5. 
To compiete the investigation of the_soIution in the neighbourhood of 1 = i, it remains 

to confirm that ut: < U for a (t) < I I: 1 25. To prove this inequality it is sufficient to 

show that ~,(l~?f - 0, f)( 0 for t> il. We find from the second equation in !11.1) that 

lJ, (15 - 0, f) = 2 (1.5 - II) (j" (i.) - d.4), 2r, < h< ZJ'% 

and since r(h)- A.4 < 0, then ii, (J'S - 0, t)< 0. 
Thus, in the problem under consideration the compression wave is reflected from the free 

surface and is transforme- a into a rarefaction wave of the semisignoton type moving dowcward. 

Then, at the time t, = 21 1-z a shock moving upward originates at the semisignoton front, the 

magnitude of the shock veloicty at the time of origination here equals f%5, i.e., is 
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independent of either f or A. 

Further investigation of the evolution of the solution for r>f, is made difficult in 
that in the general case it is impossible to find the function I= a(1) explicitly from the 
first equation in (11.1). Consequently, we will examine a specific function 

In this case the shock originates if A <24. Here z1 = 'IS - A/43, 
.- 

a (I) = (- y21 $ 61,)!5. 

Furthermore, it is confirmed directly that the shock reaches the free edge and is reflected 
by the compression wave. 

2O. Incidence of a rarefied system on a rigid foundation in a gravity force field. 
The x-axis is assumed to be directed upward. In this case 0 < z < I, A ( 0, u (5, 0) = u. (z), 

ut (5, 0) = L;” (2). The solution for t< 0 is taken in the form 

u (2, 1) = ao (2) -+- iv, (I) + At52 

where u, (z, t) > 0, z j u (-r. t) > 0. For t> 0 the solution is sought in the form 

u(z,t)= 
1 

P(Z -L l'%) --p(l'S 
- 

-I)- AZ143 O<t<a(f) 
u. (2) + tvo (J) - AP/2, a (t) Q I < 1 

where z = a(t) is the shock front. We find equations for the unknown functions a(t) and 
P(E) from the relationships (6.2) 

&2 1'2~ (1% + a) = j/T(u, (a) i- tr;, (a))* V0 (a) f '/,A ]??(a f J'zf)2 (11.2) 

We consider the system (11.2) in the special case when 

Ug (I) = kr', L'O (I) = -1i 

In this case for t<O the solution has the form 
u (z, 1, = kxz - I..rri T At*.2 

The condition of no signoton is ensured for t>O by the inequality 1'<21.f%. The solu- 
tion for f>O is a homogeneous function of the second degree, i.e., p(E)=pgc,a(t) = a~. From 
(11.2) we have 

A((~~-2?i~~4kn’~8(kn~- 

We set a=1/F2; then A, k. 1. are connected by 
We set A = -4k’3, I’= v*Fk 4. 

Thus, for O< f <I/-Z the solution is determined 

71/z 
--p- _ 

” (.r, 1) = 

krr f + kr?, 

‘-, 
kz?-1-I t_ 2 

4 ‘I 
Tkt:’ 

l‘a, = 0 

the relationship 9A T 2(,k _ 19 V'F].= (,, 

by the formulas 

For 9 1/?!I!5 < t < 2 f?! the solution is detenrined by the equalities 

where I= ~(1) is the shock front. 
We shall consider p(-32)= 0, then 



336 

7 
Pwl)=-q-kq2--‘i; ’ klq - $- kP 

We find the fuXtions p(El,a(f) from the relationships (6.2). For sr(t~ we have 

Hence 

For the function JJ (:i we have the equation 

The behaviour of the solution for large values of t can be investigated within the 
framework of analogwis constructions. liowever, the calculations in this specific probiem 
become extremely awkward. 

We write the qualitative structure of the solution of the last problem for (I< t<2 vrs!. 
For t=o a shock oxiginates at CC= 0 and moves upward at the velocity v'r.2. For (1~ zc y'Zl.2 
the medium is compressed, U(II.II = 0 and for 1/%2 < ~4 z the medium is rarefied. This 
structure of the solution holds for Og r< bP?/2. If fi:i: ~;f<Sz/%5 then the medium is in 
the compressed state: iI (", 0 = (1. iii (1. li =' 0. 

,- 
If 91/2t,5<~~2v'n then at the point x=315 a 

semxsignoton 'i‘_ and a shock (I, mcving upward at a velocity prii6t originate at t = 9 p‘Fi 3 . 

Therefore, the mesh-_ is rarefied between the shock and semisignoton fronts in the time 
interval under consideration, and is in the compressed state the rest cf the time. Note that 
the velocity of the orignating shock is lc~&. 
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